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COMPRESSION STRUTS
WITHE NONPROGRESSIVELY VARIABLE MOMENT OF INERTIA*

By 3. Radomski

SUMMARY

The buckling failure conditions for a bar with non-
progressively variable moment of inertia J,, although
constant over length 1 are developed.

n’
For two cases: 1) bar consisting of two lengths 1,
and 1l with Ji1 and Jg; 2) bar consisting of three
lengths l;, ls and again 1l,, with J,, Jao and again

Ji1 (symmetrical with respect to centor), graphs are
plotted for different ratios J,: J5 over l;: 1, show-
ing a mean momsnt of inertia Jps With the aid of which
the buckling strength Py of the bar with sudden varia-~
tions of the moment of incrtia can be representcd in the
Euler form,

I, INTRODUCTION

The following investigation 1s only valid in the
Euler range, that is, only when
Px

Ok = Fin S “a (fig. 1)

Py is buckling load at failure, £ minimum section,

min-
In addition, it is assumed that the moments of inertia at
the points of sudden variations are effective in their
full magnitude immediately before and after the Jjump,
whercas in reality thereisa brief compensating zone for
welded and a longer zone for riveted bdars,

For the rest, the assumptions are that the bar was

*"Knickstdbe mit sprungweise verZnderlichem Tragheits- _
moment ," Tuftfahrtforschung, vol. 14, no., 9, September
20, 1937, pp. 438-443.
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praviocusly exactly straight and perfectly pin-jointed,
that the effect of the cross force and the change in
buckling length due to axial locad and fleoxurc is negli-
£ibly small and that the differential equation of the
elastic 1line E J y" = - ¥ 1is applicable.

II. GCENERAL DERIVATION

Consider an originally straight bar, consisting of
n  Jjoined parts stiff in bending with n different - but
along the lengths 1, constant - moments of inertia, The
axial load P has an eccentricity e of finite magni-
tude, small in relation to the cross-sectional dimensions,
that has no effect on tne result of the investigation and
is, for the sake of simplicity, constant (fig. 2).

¥ithina length 1, +the differential equation of the
elastic line
EJdr yr" = -P(e + ¥r),
is applicable, which through v, = e‘+ ¥r reduces to:
EJp ve" = -F vy (1)

The general solution of this eguation is as known:
P vy = Ay cos ©pr + Br sin oy (2)

with Ap and By as integration constants, while

X
by

Wp = — (3) and kr = Edr (4)
K

For each of the n 1lengtihs an equation corresponding to
equatidon (2) can be estadlished, with 2 n temporarily
unknown integration constants, for whose determination
the following conditions are available:

1) 1 time y; = 0 for x; =0
2) n - 1 time ¥p_, = ¥yp for Xp_y = ly_; and x, = 0
3) n - 1 tiﬁe y3;1'= yptforx,._, = lr_l‘and :Xr = 0
4) 1 time y, =0 for x, =1p
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or altogether 2 n - conditions from which the valuss A
and B may be obtained, The differentiation of equation
(2) gives:

kp P vp' = ~Ap sin @p + By cos or (5)

and the differentiation of equation (5) with considera-
tion of equation (4) gives:

k.2 P v." = -A, cos ¢, - B, sin @, (6)

i.e., E Jdp vp" = «P vy,

Then the determinative eguations read with

Ly
ar = g _ (7)

as follows:

1. A, =P e

2, An_, cos ayp_y, + Bp.; sin ap., - Ar =0
- . kr_3

3., =Ap., sin gp.y + Br.y cO0S Qr-; =- = Br = 0O

T

4, Ap cos an + Bp sin an =P e
The equatlon scheme is as follows:

The constants A, and B, are obtained as quotiehts

of two determinants and may be written in equation (2).
The bar then fails under a buckling load if the right-hand
side of equation (2) becomes great beyond all limits,

Since <cos @, and sin ¢, are consistently < 1, A4.. and

T
Br must become very great in order that P vy goes beyond
all limits, '

Now
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Since Z as the sum of the products of kyr, s8sin g,
cos 0w, P, and e cannot go beyond all limits for finite
values of P, e, Jp, and lp, there remains as criter-
ion for the buckling of the bar

N—=>0 (9)

Yo buckling occurs for values XN > 0. The bar dbuckles at
N =0, Here N 1is the determinant of the previously
cited equation system and is of the (2 n)th degree for a
bar of n differont lengths,

Examples: For the cases n =2 to n =5 +the solu-
tions of the determinants afford the following buckling
conditions:

l.n =2
ky; cot as + cot a0 ke 2 O (10)
which, simplified, gives with wyp'! = 1 ~ qp cot ap
1 2
SR A =
2, n =3
kl 1(3
k , cotagcotay +cota, kp cob oy +cotay cob azky = = 20 (12)
2
For the symmetrical case l, =1; and J; = J; the ex-

pression reduces %to

a3
a3

2 cot q, cot gz + cot® qi =2 — El Z0 (13)
. Lo 1 2
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3;11:4:

+ k; cot as cot a5 cot ¢ -
+ cot a, k,; cot Ay cot ‘qa -
+ cot o cot 0o k cot g -

3

+ cot o, cot a, cot Ay k, -

+ kycotagcotazcota,cotog-
+ cotag kycotagcota,coba,-
+ cotdlcotag ~k3cota4cotag-
+ cotqoycotaycota, k,cotas-
+.cota1cotaeéota3cota4 k.~

1
- cotog cota, —=

cot a,

cot Qn

cet a -

cot o, ——m— 2

k. k
cotalcotaé_i__i

o

k, kg

cotalcotas

ry k
cota, cotq, ————

cota, cotag
ks,

. k
1 53
cotaecotas_____
4

ky kg

cotogcota,
3

ky, Ik
cotaécotas—————

ey

k, Ik

liz

0]

(14)
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k- k4

- cotascota5

k
- cotq, cotay 2
kp
ky, X, kg
+ 20 15
ky, ks (15)

The mathematical solution of equations (14) and (15)
is already quite elaborate and unusually sensitive, be-~
cause the result appears as small difference of great
numbers, As n increascs the terms become consistently
more cxtensive and so become void as far as practical
application is concerned,

As it is impossible to express explicitly the buck-
ling load P contained in o and k from the preceding

expressions, a method covering the usual cases of n = 2
and n = 3 by means of a substitute inertia moment is
given,

III. THE SUBSTITUTE MOMENT OF INERTIA

Case 1 (fig. B5).- The bar consists of n = 2 lengths
!, and 1, 8o that 1, + 1, = 1, with the moments of
inertia J, and J, (fig. 3). Force P,__ 1is the ulti-

mate buckling load of the bar and complies with equation
(10)

k, cot g + k; cot o, = O.

Then visualize a bar of the same length | Dbut constant
moment of inertia J,; over the entire length, whereby,
respectively,

J, > Jdp > J, and I, < Iy < I, (16)

J is to be such as to comply with

m
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E Jp TT2
Pp=2 = = (17)
[2
With the simplified relation P 1in place of Pp-,, equa-
tion (17) gives:
I —
- = =,/J
/E L‘/—m
Then
T 5 U/ ISP
_kl :/:———— = —.\ L and kg = —-_—_3- [ _.E (18)
P T JIn P LI '
.Ll 1,1 Jm ) .LE . 142 Jm
o0, =" =mn — and L= ——=1 =—-——f— (19}
T 2 Jd3 k_a 1 Ja
Having recourse to egquation (18) transforms egquation
(10) 1into:

J1
a cot a, = - cot a, (20)

Herefrom the correlated a, and l,: l; can be so
determined for a constant ratio J,:J; and a variable
a, that equation (20) is fulfilled.

Because it is:

[_.
_l-..l— = (-}‘--];A/J-—]; = €
z’2 .a2 JB -

and results in

1 €

- =
2
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after which:

m:
s

P | (21
1'].

V/AE; Oy 1

- = 22

Ja m 1, (22)
Im

Then the values B = 7~ can be plotted for the

R, 2

/

T. -

paranmeter p ZM/IEL against the abscissa 1,: 1 and the
2

value B interpolated for the individual case with def-

inite p and 1,: 1. Assuming J; > Jp, B remains = 1

and the buckling load follows at:

E Jo TT2
P=—Tg—'B (23)

The boundary curve of these curve systems follows at
J
P = Ei-——>a“ wherein Jy; is finite and & exceeds

all boundaries, Then it affords

PR
! ly

ky = " === s ay=3"——0, and q, cot a;—-1
~ P 1

From the transformed eguation (10)

l, o, cot ag + 1, G, cot G, =0

1l

follows the condition for the boundary curve:

1

-1 ws cot g + 1 =0

i, :
o _fero, oW1
(38 Ga 1 v,!
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It exists only for values

T
5 < a, < 17

Case 2.- The bar consists of n =3 parts 11, lp,
and 1,, so that 1, + 15 + 1, =1 and of the inertia
mouents J,, Jz, and J, symmetrical to the center (fig,

4). The force Pp—=; 1is the buckling load at failure and
complies with equation (13):
. o ko kl
2 cot a, cot @y + cot” g —— = — = O,
"k, kg
Again a mean inertia moment J, 1is introduced, so
thoat:
E dp ne :
Pp=g = P = — (24)
l

As a result, equations (18) and (19)

are applicable again
and equation (13) becomes:

4 oF:
2 cot q, = -= tan q, - — cot (25)
V/ Ja Ja
From this it is possibdle to so determine for a con-
stant ratio J,: Js and a variable angle oo, the corre-
lated angle o, and the ratio 1,: 15, that equation
(25) is complied with,
For i1t is:
hoon
l, oc,zm_/ J,
and one obtains
l € l 1

=X =
2
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and as bgfore:

[ L2 =22 ana [/ -B=2=2 —
J' TT z, Ja TT la

1
For the symmetrically stepped bar two cases
a) J, »>Jp; and b)) J, >J,

must be distinguished,

a) (fig. 6) Jy, > Jp
g, i
1 m
P =~/[:~ =21 and =/ ——=21
a i Pa 7
are chosen as parameters of the curves. The buckling load
follows at
2
E Jp, m
P = ——5— Ba’ (26)

For the boundary curve with parameter

P, = Jl
a /) T —-%oo
Ja

where Jy; is finite and J, © wWe obtain
EJ '
ky = [ —t—»po g, = -+ 50, and q; cot q,—>51
P Iy

Bguation (L3) may also be written as:

1 1
2 cot a, + cot q, lz 32 - Ei_—————— = 0
G.g 11 (Il 12 cot G‘l
2
l
or + 2 cot qgp li X+ 1 - = aga =0

1, 1.2
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1 1 2
2 2 :
1 + cot? g = cot™ ay - 2 cot ag ll'qg +‘<_i a2.>
=] ,13
1 2
+ _— = < cot a, - & g;.)
sin? o 2
1 1 .
+ — = % (cot Gp - — g
sin a, : 1y 4
1 1 + cos qa» N
o~ - = 1 L—-
Ag sin q, 2
l

Only positive values of Ti- and q, being possible, the
2

negative signs disappear. And the equation of the bound-
ary curve becomes

1 + cos «g ly cot = 21,
= eme= O =
ap ®ln ap b T Qg L
e
Ja
Here Dy = — 2 1 1is the chosen parameter, Then
J1
JIIl ~ .
By = ~—- 21 and the buckling load becomes
Jl' :
Eg m
P = —'—-;——— an ] . (27)
l
If the parameter
J
pb = _..2. —C0

YARR
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wherein J, is finite and J, —>®, the buckling load
of the whole bar becomes

1 EJd, n°
1,2

Py =

because the bar 1, may for reasons of symmetry be con-
sidered as being rigidly clamped at 1,. For the bound-
ary curve the condition is: ’ ’

S SR [om _ 1
- ¥ o j——% or B b _—:. ‘\/' —— = cmt—
41, l Ja

The graphs cnsuing therefrom afford the solution of the
buckling loads P, with the aid of the substitute moments

of inertia, that is

Iy = J, 58 for case 1
Im = T, Ba® " " 2a
Ig = J, Bf n " Sy

IV. NOTE CONCERNING THE GRAPHS

Charts 5 to 7 give the correlated changes in buck-
ling load for different ratios 1;:1 and 1: 1 and
different ratios of moments of inertia, They show that
reinforcing or weakening a short end length of a compres-
sion strut within range

(0 <« 1,:1<0.,1 or O0< l,:1 < 0.1)

causes only a minor change in its buckling load, whereas,
as figures 6 and 7, for example, show, a cross sectional
change of a short central length alrcady produces a sub-
stantial change in the buckling load. They readily show
the effect of local cross-sectional changes and make it
thus possible, even for a given inertia moment and a
stiprlated buckling load Py, to determine length and
dimension of the other piece by variation of p and l;: 1,
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These graphs (figs. 5 to 7) have the additional charac-
teristic that the value f equals the parameter 'p in

the extreme condition ll: 1 =1,

However, since it is impossible to include all prob-
able cases in one graph - for 1;: 1—>1 and p > 2.2
the graphs give no values g - the following modificd
graphs will be found to be more practical.

Case 1 (fig, 8).~ Y as function of 1l;: 1 'for
parameter '

J, + J
Jp = 1 2 2
2
buckling load:
J J
g st e
P2 .2
Pr = 4

Gase 2a (fig, 9).- wa as function of 2 1;: 1 for
the parameter
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buckling logd:

Pk=

Case 2b (graph, fig. 10).- 7Y, as function of

l, : 1 for parameter

Jl

Qy F -

Jp * e
2

substitute inertia moment:

Ji + J 2
1 B'V

Iy = =2y
= 2
buckling load: R S
Em -
2 2
Pk = .La 'Yb
Graph 9 loses its clearness when 2 L : 1 —>1, A

close approximation in the range of 0,9 < 2 1l1:1 « 1
is found in FBppl's solution ° (cf. "Lectures on Techni-
cal Mechanies," vol, III, 7th ed.,, p. 384),

Thers:

E g

Py =
J

(311 + =L 1)

V. VALIDITY IN TETMAJER'S RANGE

O0f course, it is understbod that the determination
of the failing load through the substitute moment of in-
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ertia alone is-suffidient only when the cbmpression strut
does not fail as a result of local overstressing, In all
cases which fail to satisfy the previously cited condition

sz_:E.’.k_ < 0g
fmin

the solution of the buckling load P must be followed

by further investigation, especially if the range of
fnin lies in bay center, The same applies to all struts

with nonprogressively variable moment of inertia that do
not fall in category 1, 2a, or 2b. Concerning the actual
ultimate buckling load Py pr, 1t can be stated only for

the time being that

Prx,7 < Px,Br < Pk,E

Therein the upper limit P, p 1is formed by that buckling

load which satisfies the buckling condition N = 0 with
preservation of E even in the plastic range. The lower
limit Py p 1is obtained as follows:

Determine;

P
Ox,E = S5 E (> 0,)
’ fmin G

Then let oOyx g denote Tetmajér'é ultimate buckling stress
at the same point A +to which the stress oy g Dbelongs,

Next, leb:

—_ Gk’T
Pr,0 = P55
k,E

The actual buckling load Py gy ‘then will lie be-

tween the two limits, because, first, elastic buckling is
ascribed to the whole strut, while a buckling modulus
T « E exists in the range fThmine and secondly, the

whole strut is given a Dbuckling modulus T « E while T
prevails only in the range of fpipe.
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As the buckling modulus T varies with the stress

-only the buckling condition N Z O can be investigated

for a predetermined buckling load, whereby the buckling
modulus T, which varies in the individual lengths 1,4
replaces E. The ultimate buckling load Py p, must de
ascertained by trial, i.e., by determining the buckling
condition N 2 O for several different values

P(Pk,T < P < Pk,E)- followed by graphical interpolation,

Translation by J. Vanier,
National Advisory Committee
for Acronautics,
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0
>p=2.2

’ Im
B= Y as function of Iy:1 or lp:1 for the parameter

. [F
p= /-—1
J2

E Jp T°
Failing load Pp = —vop—

12
Substitute moment of inertia:J; =Jg g2

Bz

Figure 5.- Buckling struts with non-progressively variable moment
of inertia; substitute moment ef inertia Jp.
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p 91 J2 79 |

oo —>__‘:'__"EE--' .. ’

e—ll'>l<"l g‘va(' ZI'>i

2.0
B 1

<

1.8

1.6

1.4

1.2

1.0

3 :
B, = == as function of 21y il or lp:l for the parameter

J2 31
E J, 2

Failing load Py = B BaR

Substitute moment of inertia:dy=Jg [

Figure 6.- Buckling struts with non-progressively variable moment
of inertia; substitute moment of inertia Jp.
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214/1
‘8 [.4 O
Z'E;J Jo 77 T >Pp = 2.2
P 1 Y2 "1 p
s, SV

E:l >L-22._>3-1 ;{ T 7

S Z ——

2.0 . T55a T /—17—-

1.8 b
<l
. | /
B

L | = 1.0
.8
; o/ 1
dJ,
Bp= [—2 as function of 12:1 or 213 21 for the parameter
J] _ [
By I1
Bt
Failing load P = 7 By

Substitute moment of inertia:Jy,=Jy Bbz

“Figure 7.~ Buckling struts with non-progressively variable moment

of inertia; substitute moment of inertia Jy.
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< - -
SO N
0 .2 o d .6 .8 1.7
1,/ 1
J
Y as function of 1[j:! for parameter g = 2
J1 + J2
2
. . Ji+Jdz 2
Substitute moment of inertia: Jy = 5 Y
TT2 Jl + LT2
Buckling lial Pyr= 5 2 ve
1

Figure 8.~ Buckling struts with non-progressively variable
moment of inertia.
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Yo = V2 = 1.414+1init for 213/1-»1 and q,~>0.

a
1.4 ‘Jl | Js IJ]_ T l*/—z—
S SR W) B
L1k 1 ok— 1
N l
1.oR2 M 7
R —————r
.7 L ///
8 =5 s i
. =~ ) L
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.6_— Oﬂ:_/_/ / //
-2 l____ __—J—-‘/ T /1/ I/
4 / ,/
. |~ .
N B (i
05 I R o
2
° |
0 o2 .4 .6 .8 1.0
214/1 ;
Yo a8 function of 217 ! 1 for parameter gqg= 2 .
J1+4J
I +Jp 2
Substitute moment of inertia: Jm=-—§¢—*vaz
Jy+d
g e S1 2
Buckling load Pj.= = T3 2. Vg2

Figure 9,- Buckling struts with non-progressively variable
moment of inertia
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Yp=v2= 1,414wdimit for 13/ 1->1 anl qy—> 0

1.4 . Js
I 2
EE‘T]:‘z-_E-—‘-T:%_ o J—l—‘aé. .

. I
e 1y~ goke— 1]

S P R

1.0

- e
. e e }
B s y |
."—_t"_.l S LA ._:l;/ [ E——, ——t —— —
.05 L
,//
-] g A4
|
I ]
0 .2 o A .8 1.9
12/ 1
Iy
Yb as function of lo. ! for parameter = —
2 P R S S
2

Jl + Jz 2
Substitute moment of inertia: Jm = ——— Yy,
ET® Ji+J2

2

Buckling load Pg~= 5 Yy

Figure 10.- Buckling struts with non-progressively variable
moment of inertia.







